Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates.
نویسندگان
چکیده
Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion.
منابع مشابه
Edible applications of shellac oleogels: spreads, chocolate paste and cakes.
We demonstrate three potential edible applications of shellac oleogels as (i) a continuous oil phase for preparation of emulsifier-free, structured w/o emulsions (spreads), (ii) a replacer for oil-binders in chocolate paste formulations and (iii) a shortening alternative for cake preparation. Water-in-oil emulsions with up to 60 wt% water were prepared without the need for an emulsifier by simp...
متن کاملEdible oleogels based on water soluble food polymers: preparation, characterization and potential application.
Oil structuring using food-approved polymers is an emerging strategy and holds significant promise in the area of food and nutrition. In the current study, edible oleogels (containing >97 wt% of sunflower oil) were prepared using a combination of water soluble food polymers (methylcellulose and xanthan gum) and further evaluated for potential application as a shortening alternative. Microstruct...
متن کاملComparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel
In lipid-based food products, fat crystals are used as building blocks for creating a crystalline network that can trap liquid oil into a 3D gel-like structure which in turn is responsible for the desirable mouth feel and texture properties of the food products. However, the recent ban on the use of trans-fat in the US, coupled with the increasing concerns about the negative health effects of s...
متن کاملModeling the Rheological Properties of Carboxymethylcellulose Stabilized O/W Emulsions Based on Sunflower Oil and Tallow Fat
The aim of this research was to assess the effect of fat type and concentration as well as the continuous phase viscosity on the rheological properties of an oil-in-water (O/W) emulsion. Thus, sunflower oil and tallow fat were used as the dispersed phase of the emulsion both at 10 and 50% (w/v) and CMC solutions (at 0.1, 0.3 and 0.5% w/v) were acted as the continuous phase. CMC solutions and em...
متن کاملInfluence of the Oil Phase and Topical Formulation on the Wound Healing Ability of a Birch Bark Dry Extract
Triterpenes from the outer bark of birch are known for various pharmacological effects including enhanced wound healing (WH). A birch bark dry extract (TE) obtained by accelerated solvent extraction showed the ability to form oleogels when it is suspended in oils. Consistency of the oleogels and the dissolved amount of triterpenes varies largely with the used oil. Here we wanted to know to what...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 31 7 شماره
صفحات -
تاریخ انتشار 2015